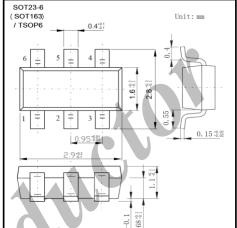


AP6601 30V Complementary MOSFET


• General Description

AP6601 combines advanced MOSFET technology with a low resistance package to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, which is suitable for a wide variety of applications.

P-Channel

Top View

ROHS

Applications

- Synchronous DC-DC conversion circuits
- Load/Power management of portable devices

Product Summary

N-Channel

$V_{ m DS}$	30V
ID (at $V_{GS} = 10V$)	3.4A
$R_{DS(ON)}$ (at $V_{GS} = 10V$)	$< 60 \text{m}\Omega$
$R_{DS(ON)}$ (at $V_{GS} = 4.5V$)	$< 70 \mathrm{m}\Omega$
$R_{DS(ON)}$ (at $V_{GS} = 2.5V$)	$< 90 \text{m}\Omega$

P-Channel

$V_{ m DS}$	-30V
In $(at V_{GS} = -10V)$	-2.3A
$R_{DS(ON)}$ (at $V_{GS} = -10V$)	$< 115 \mathrm{m}\Omega$
$R_{DS(ON)}$ (at $V_{GS} = -4.5V$)	$< 150 \mathrm{m}\Omega$
$R_{DS(ON)}$ (at $V_{GS} = -2.5V$)	$< 200 m\Omega$

Absolute Maximum Ratings Ta = 25°C

Parameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage		V_{DS}	30	-30	V	
Gate-Source Voltage		V_{GS}	±12		V	
Continuous Drain Current	Ta = 25°C	I _D	3.4	-2.3		
	Ta = 70°C		2.7	-1.8	Α	
Pulsed Drain Current		I_{DM}	20 -15			
Power Dissipation	Ta = 25°C	P_{D}	1.15 0.73		W	
	Ta = 70°C	P_{D}				
Junction Temperature		T_J	150		°C	
Storage Temperature Range		T_{STG}	-55 to 150			
Thermal Characteristics						
Thermal Resistance. Junction-to-Ambient	t ≤ 10s	D.	110		°C/W	
	Steady State	$R_{\theta JA}$	150			
Thermal Resistance. Junction-to-Lead		$R_{\theta JL}$	80]	

N-Channel

AP6601 30V Complementary MOSFET

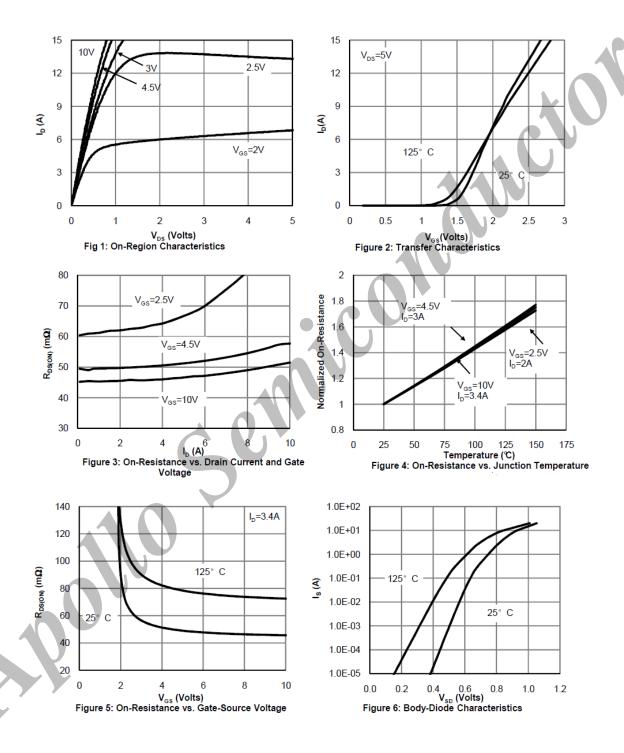
• Electrical Characteristics Ta = 25°C (N-Channel)

ı' D	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static Parameters							
rain-Source Breakdown Voltage	V_{DSS}	I _D =250μA, V _{GS} =0V	30			V	
Zono Cata Valtaga Drain Correct	I_{DSS}	V_{DS} =30V, V_{GS} =0V		_	1		
Zero Gate Voltage Drain Current		V _{DS} =30V, V _{GS} =0V, T _J =55°C			5	μΑ	
ate-Body Leakage Current	I_{GSS}	V_{DS} =0V, V_{GS} =±12V			±100	nA	
ate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5		1.5	V	
n-State Drain Current	I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	20			A	
Static Drain-Source On-Resistance		V _{GS} =10V, I _D =3.4A			60	mΩ	
	P. scare	$V_{GS}=10V$, $I_D=3.4A$, $T_J=125$ °C			88		
	R _{DS(ON)}	V_{GS} =4.5V, I_D =3A	7		70		
		V_{GS} =2.5V, I_D =2A			90		
orward Transconductance	$\mathbf{g}_{ extsf{FS}}$	V_{DS} =5V, I_D =3.4A		14		S	
iode Forward Voltage	V_{SD}	$I_S=1A$, $V_{GS}=0V$			1	V	
aximum Body-Diode Continuous Current	I_S				1.5	A	
Dynamic Parameters							
put Capacitance	C_{iss}		182		285		
utput Capacitance	C_{oss}	$V_{GS}=0V$, $V_{DS}=15V$, $f=1MHz$	25		45	pF	
everse Transfer Capacitance	C_{rss}		10		25		
ate Resistance	$R_{\rm g}$	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.9		2.7	Ω	
witching Parameters							
otal Gate Charge (10V)	0			10	12		
otal Gate Charge (4.5V)	$Q_{\rm g}$	V _10V V _15V I _2 //		4.7	6	nC	
ate Source Charge	Q_{gs}	V_{GS} =10V, V_{DS} =15V, I_{D} =3.4A		0.95			
ate Drain Charge	$ m Q_{gd}$			1.6			
urn-On Delay Time	$t_{D(on)}$			3.5			
urn-On Rise Time	t _r	V_{GS} =10V, V_{DS} =15V, R_{L} =4.4 Ω ,		1.5		ns	
urn-Off Delay Time	t _{D(off)}	$R_{GEN}=3\Omega$		17.5			
urn-Off Fall Time	t_{f}			2.5			
ody Diode Reverse Recovery Time	t_{rr}	1 2 4 4 4 / 4 100 4 / .			12		
ody Diode Reverse Recovery Charge	Q_{rr}	I_F =3.4A, d_i/d_t =100A/ μ s			4	nC	

AP6601 30V Complementary MOSFET

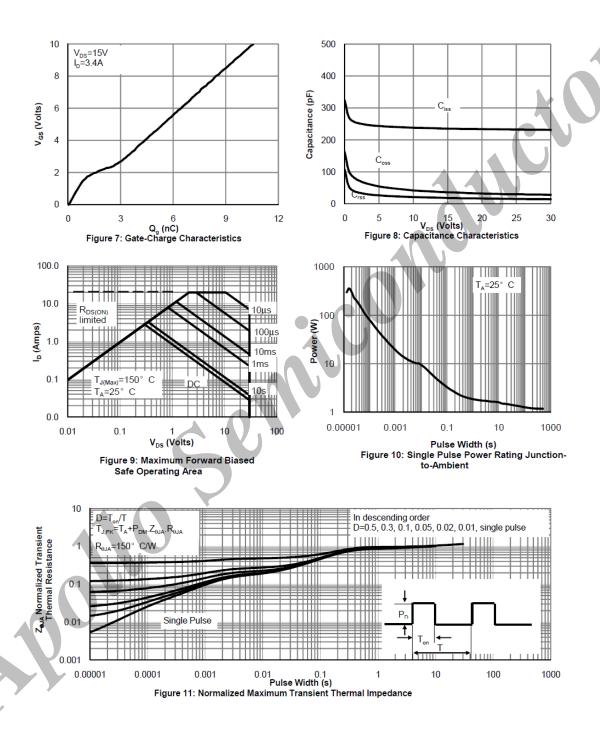
• Electrical Characteristics Ta = 25°C (P-Channel)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static Parameters							
Drain-Source Breakdown Voltage	V_{DSS}	$I_D = -250 \mu A$, $V_{GS} = 0 V$	-30			V	
Zovo Cata Valtaga Dvain Comment	I_{DSS}	V_{DS} =-30V, V_{GS} =0V		_	-1		
Zero Gate Voltage Drain Current		V _{DS} =-30V, V _{GS} =0V, T _J =55°C			-5	μΑ	
Gate-Body Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±12V			±100	nA	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.6		-1.4	V	
On-State Drain Current	$I_{D(ON)}$	V _{GS} =-10V, V _{DS} =-5V	-15			Α	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-2.3A	A R		115	mΩ	
		V_{GS} =-10V, I_D =-2.3A, T_J =125°C			200		
		V_{GS} =-4.5V, I_D =-2A	V		150		
		V_{GS} =-2.5V, I_{D} =-1A			200		
Forward Transconductance	$\mathbf{g}_{ extsf{FS}}$	V_{DS} =-5V, I_{D} =-2.3A		8		S	
Diode Forward Voltage	V_{SD}	$I_S=-1A$, $V_{GS}=0V$			-1	V	
Maximum Body-Diode Continuous Current	I_S				-1.5	Α	
Dynamic Parameters							
Input Capacitance	C_{iss}		205		315		
Output Capacitance	C_{oss}	V_{GS} =0V, V_{DS} =-15V, f=1MHz	25		50	pF	
Reverse Transfer Capacitance	C_{rss}		10		30		
Gate Resistance	R_{g}	V _{GS} =0V, V _{DS} =0V, f=1MHz	4		12	Ω	
Switching Parameters							
Total Gate Charge (10V)	b		4.5		7		
Total Gate Charge (4.5V)	Q_{g}	V 10V V 15V I 22A	2		4	C	
Gate Source Charge	Q_{gs}	V_{GS} =-10V, V_{DS} =-15V, I_{D} =-2.3A		0.7		nC	
Gate Drain Charge	$ m Q_{gd}$			1			
Turn-On Delay Time	t _{D(on)}			6			
Turn-On Rise Time	$t_{\rm r}$	V_{GS} =-10V, V_{DS} =-15V, R_{L} =6 Ω ,		3.5		ns	
Turn-Off Delay Time	$t_{\mathrm{D(off)}}$	R_{GEN} =3 Ω		20			
Turn-Off Fall Time	t_{f}			5			
Body Diode Reverse Recovery Time	t_{rr}	1 224 1/1 4004/			15		
Body Diode Reverse Recovery Charge	Q_{rr}	I_F =-2.3A, d_i/d_t =100A/ μ s			6	nC	
	•				•		

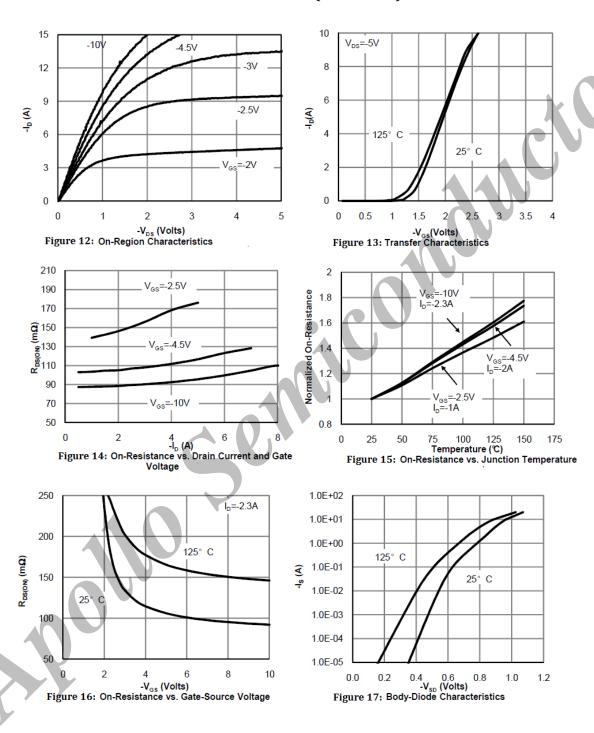

• Ordering Information

Ordering Part Number	Package	MOQ
AP6601	SOT23-6 (SOT163) / TSOP6	3,000 pcs / reel

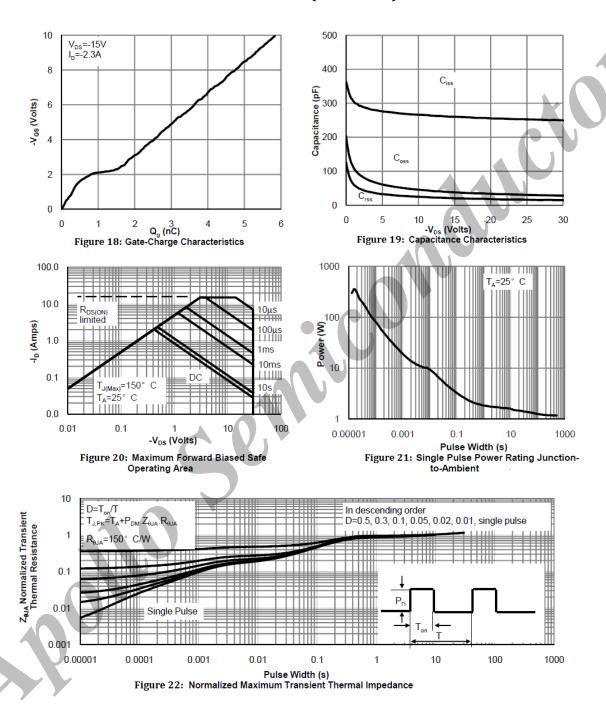
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. APOLLO SEMICONDUCTOR DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. APOLLO SEMICONDUCTOR RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.


• Typical Electrical and Thermal Characteristics (N-Channel)

Note 1: The static characteristics in Figure 1 to 6 are obtained using $<300\mu A$ pulses, duty cycle 0.5% max.


• Typical Electrical and Thermal Characteristics (N-Channel)

Note 2: The curves in Figure 9 to 11 are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in^2 FR-4 board with 2oz. copper, assuming a maximum junction temperature of $T_{\text{J[MAX]}}$ =150°C. The SOA curve provides a single pulse rating.


• Typical Electrical and Thermal Characteristics (P-Channel)

Note 3: The static characteristics in Figure 12 to 17 are obtained using $<300\mu A$ pulses, duty cycle 0.5% max.

• Typical Electrical and Thermal Characteristics (P-Channel)

Note 4: The curves in Figure 20 to 22 are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in^2 FR-4 board with 20z. copper, assuming a maximum junction temperature of $T_{\text{J(MAX)}}$ =150°C. The SOA curve provides a single pulse rating.

AP6601 30V Complementary MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Apollo Semiconductor Ltd., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Apollo"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Apollo makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Apollo disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Apollo's knowledge of typical requirements that are often placed on Apollo products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Apollo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Apollo products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Apollo product could result in personal injury or death. Customers using or selling Apollo products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Apollo personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Apollo. Product names and markings noted herein may be trademarks of their respective owners.