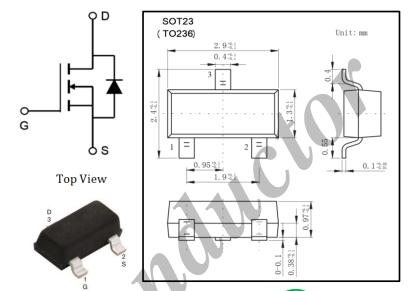


AP2366A 30V N-Channel Enhancement Mode MOSFET

• General Description


AP2366A combines advanced MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$. This device is most suitable to load-switch or PWM applications.

Applications

- DC/DC converter for portable devices
- Load switch

• Product Summary

$V_{ extsf{DS}}$	= 30V
$I_D (V_{GS} = 10V)$	= 5.8A
$R_{DS(ON)}$ (at $V_{GS} = 10V$)	< 36mΩ
$R_{DS(ON)}$ (at $V_{GS} = 4.5V$)	< 42mΩ

• Absolute Maximum Ratings (T_A = 25°C, unless noted)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		$V_{ m DS}$	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current (T _J = 150°C)	$T_C = 25$ °C	I _D	5.8 *a	A	
	$T_{\rm C} = 70^{\circ}{\rm C}$		4.7		
	$T_A = 25$ °C		4.5 *b, c		
	$T_A = 70$ °C		3.6 *b, c		
Pulsed Drain Current (t=300μs)		I_{DM}	20		
Continuous Source-Drain Diode Current	$T_C = 25$ °C	I _S	1.75		
	$T_A = 25$ °C		1.04 *b, c		
Power Dissipation	$T_C = 25$ °C	P _D	2.1	W	
	$T_C = 70$ °C		1.3		
	$T_A = 25$ °C		1.25 *b, c		
	$T_A = 70$ °C		0.8 *b, c		
Thermal Resistance. Junction-to-Ambient *b	, d	$R_{\theta JA} (t \leq 5s)$	100	°C/W	
Thermal Resistance. Junction-to-Foot (Drain)	R _{θJF} (Steady State)	60	C/ VV	
Junction Temperature		T_{J}	150	°C	
Storage Temperature Range		T_{STG}	-55 to 150	٠	

Notes

^{*}a Based on $T_C = 25$ °C

^{*}b Surface mounted on 1" x 1" FR4 Board

^{*}c t = 5s

^{*}d Maximum under steady state conditions is 125°C/W

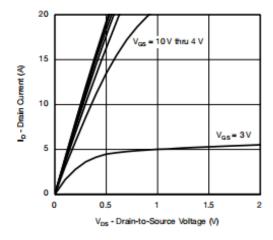
AP2366A 30V N-Channel Enhancement Mode MOSFET

• Electrical Characteristics (25°C, unless noted)

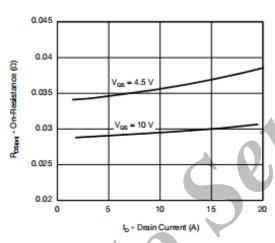
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V_{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	30		4	V
	Ţ	$V_{DS}=30V$, $V_{GS}=0V$			1	_
Zero Gate Voltage Drain Current	I_{DSS}	V _{DS} =30V, V _{GS} =0V, T _J =55°C			10	μΑ
Gate-Body Leakage Current	I_{GSS}	$V_{DS}=0V$, $V_{GS}=\pm20V$		7	±100	nA
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.2		2.5	V
On-state Drain Current *e	I _{D(ON)}	V _{DS} ≤ 5V, V _{GS} =10V	20			A
Static Drain-Source On-Resistance *e	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A V _{GS} =4.5V, I _D =4.2A			36 42	mΩ
Forward Transconductance *e	$\mathbf{g}_{ ext{FS}}$	V_{DS} =15V, I_{D} =4.5A		13		S
Diode Forward Voltage	V_{SD}	I _S =3.6A, V _{GS} =0V			1.2	V
Input Capacitance	C_{iss}			335		
Output Capacitance	C_{oss}	V_{GS} =0V, V_{DS} =15V, f=1MHz		78		рF
Reverse Transfer Capacitance	C_{rss}			30		
Total Gate Charge	Q_{g}	$V_{GS}=10V, V_{DS}=15V, I_{D}=4.5A$		6.4	10	
Total Gate Charge	Q_{g}			3.2	5]
Gate Source Charge	Q_{gs}	V_{GS} =4.5V, V_{DS} =15V, I_{D} =4.5A		1.1		nC
Gate Drain Charge	Q_{gd}			1.3		1
Gate Resistance	R_{g}	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.7		7	Ω
Turn-On Delay Time	$t_{D(on)}$			32	48	
Turn-On Rise Time	t_{r}	V_{DD} =15V, R_{L} =4.2 Ω ,		48	71	,,,
Turn-Off Delay Time	$t_{D(off)}$	I_D =3.5A, V_{GEN} =4.5V, R_g =1 Ω		18	27	ns
Turn-Off Fall Time	t_{f}			20	30	
Turn-On Delay Time	$t_{D(on)}$			5	10	
Turn-On Rise Time	t_r	$V_{DD}=15V, R_{L}=4.2\Omega,$		12	20	ns
Turn-Off Delay Time	$t_{D(off)}$	I_D =3.6A, V_{GEN} =10V, R_g =1 Ω		14	21	115
Turn-Off Fall Time	t_{f}			8	16	
Body Diode Reverse Recovery Time	t_{rr}			12	18	ns
Body Diode Reverse Recovery Charge	Q_{rr}	I_F =3.6A, d_I/d_t =100A/ μ s,		5	10	nC
Reverse Recovery Fall Time	ta	T _J =25°C		7		ne
Reverse Recovery Rise Time	t_b			5		ns
Continuous Source-Drain Diode Current	I_S	T _C =25°C			1.75	A
Pulse Diode Forward Current	I_{SM}				20	A
Body Diode Voltage	V_{SD}	$I_S=3.6A, V_{GS}=0V$			1.2	V

Not

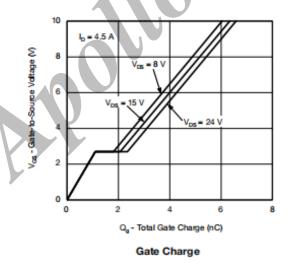
^{*}e Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$


AP2366A 30V N-Channel Enhancement Mode MOSFET

• Ordering Information


Ordering Part Number	Package	MOQ
AP2366A	SOT23 (TO236)	3,000 pcs / reel

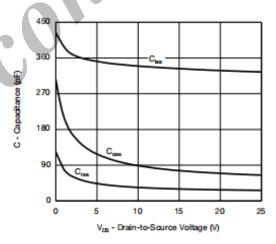
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. APOLLO SEMICONDUCTOR DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. APOLLO SEMICONDUCTOR RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.


• Typical Characteristics (25°C, unless noted)

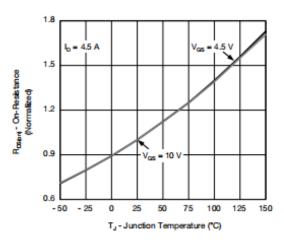
Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

T_c = 25 °C

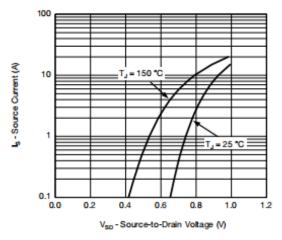

T_c = 25 °C

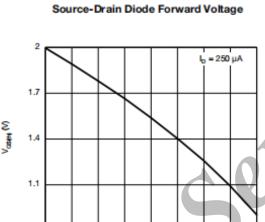
T_c = -55 °C


T_c = -55 °C

T_c = -55 °C

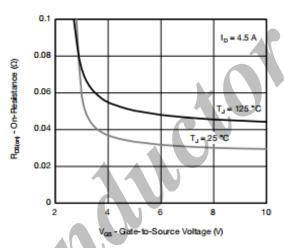
Transfer Characteristics

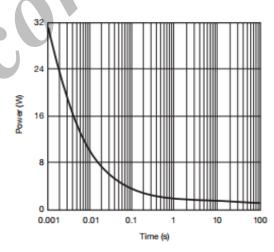



Capacitance

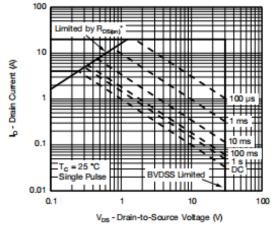
On-Resistance vs. Junction Temperature

Typical Characteristics (25°C, unless noted)

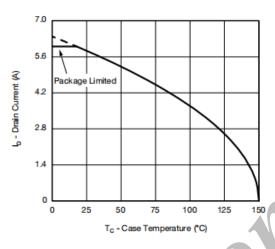


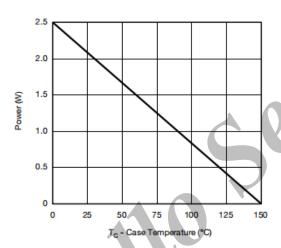

Threshold Voltage

- Temperature (°C)

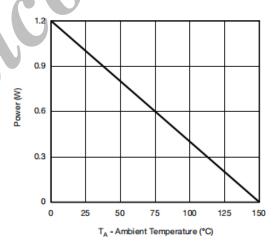

- 50 - 25 0 25 50 100 125

On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power (Junction-to-Ambient)

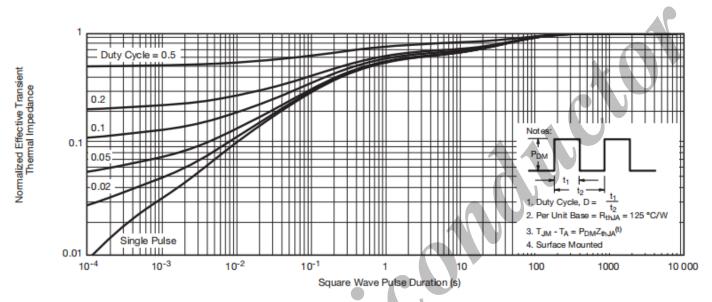

* V_{GS} > minimum V_{GS} at which P_{OStort} is specified

30V N-Channel Enhancement Mode MOSFET

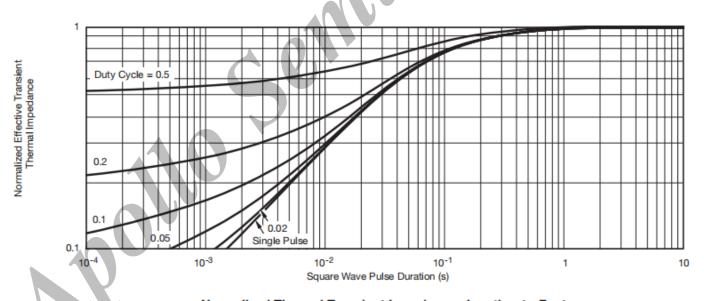

• Typical Characteristics (25°C, unless noted)

Current Derating a

Power Derating, Junction-to-Foot


Power Derating, Junction-to-Ambient

Note


a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

• Typical Characteristics (25°C, unless noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

30V N-Channel Enhancement Mode MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Apollo Semiconductor Ltd., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Apollo"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Apollo makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Apollo disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Apollo's knowledge of typical requirements that are often placed on Apollo products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Apollo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Apollo products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Apollo product could result in personal injury or death. Customers using or selling Apollo products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Apollo personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Apollo. Product names and markings noted herein may be trademarks of their respective owners.